

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021

Course: ECE/EEE

Lesson plan

Name of the faculty: Er. Gaurav Kumar

Discipline: ECE/EEE

Semester: 4th

Subject: Digital Electronics

Lesson Plan Duration: 16 weeks (From May, 2021 to Sep 2021)

Work Load (Lecture/ Practical) per week (in hours): Lecture-02, Practical-01

Week		Theory	Practical	
	Lecture day	Topic(Including assignment/test)	Practica l Day	Торіс
1 st	1 st	Introduction of Logic Simplification	1 st	Introduction of Digital System Design Lab
	2 nd	Review of Boolean Algebra		, ,
2 nd	1 st	Review of DeMorgan's Theorem	2 nd	To study & design basic gates
	2 nd	SOP & POS forms		
3 rd	1 st	SOP & POS forms		To study & design basic gates
	2 nd	Realization Using Gates. K- maps up to 6 variables	- 3 rd	
4 th	1 st	K-maps up to 6 variables	4 th	To realize and minimize five & six variables using K-Map
	2 nd	VEM technique		method
5 th	1 st	Binary codes	5 th	To verify the operation of Multiplexer &
	2 nd	Code Conversion Numerical.		De-multiplexer
6 th	1 st	Combinational & Sequential Logic Design : Comparators	6 th	To perform Half adder and Full adder
	2 nd	Multiplexers		

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021

Course: ECE/EEE

7^{th}	1 st	Encoder, Decoder		To perform Half adder and
	2 nd	Driver & Multiplexed Display, Half and Full Adders, Subtractor.	7 th	Full adder.
8 th	1 st	Parallel Adders, Adder with Look Ahead Carry ,BCD Adder		
	2 nd	Sequential Logic Design: Building blocks like S-R	8 th	To perform Half Substractor and Full subtractor
9 th	1 st	JK and Master-Slave JK Flip Flop		
	2 nd	Ripple and Synchronous counters, Sequence Generator, Shift registers.	9 th	To verify the truth table of S-R,J-K,T & D Type flip flop
10 th	1 st	Finite state machines : Introduction, Design of synchronous FSM	10 th	To study FLIP- FLOP
	2 nd	Serial Binary Adder		conversion.
11 th	1 st	Sequence detector, Parity Bit Generator	11 th	To design & verify the operation of a 3 bit
	2 nd	Pulse train generator		synchronous counter.
12 th	1 st	Algorithmic State Machines charts	12 th	To design & verify the
	2 nd	Introduction, Component of ASM chart	+	operation of synchronous
				UP/DOWN decade counter
				using JK mp
13 th	1 st	Introductory examples of ASM chart.	13 th	Conversion of state diagram
	2 nd	Introduction of Logic Families and PLDs	-	implement it using logical ckt.
14 th	1 st	TTL NAND gate, Specifications	14 th	Design a RLC resonance circuit & verify the transient
	2 nd	Noise margin, Propagation delay		response for different values of R, L & C
15 th	1 st	fan-in, fan-out	15 th	Discussion of Previous Year Question Paper.

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021

Course: ECE/EEE

	2^{nd}	Tri State TTL, ECL, CMOS families and	
		their interfacing	
16 th	1^{st}	Concept of Programmable logic devices like PAL, PLA,ROM,CPLD and FPGA.	
	2 nd	Logic implementation using Programmable Devices.	

Text/Reference Books:

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009
- 2. A.Anand Kumar, "Switching Theory & Logic Design", PHI.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006.
- 4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989.
- 5. Morris Mano, "Digital Design: With an Introduction to the Verilog HDL 5th Edition, Pearson Education, 2013.
- 6. Morris Mano, "Logic & Computer Fundamentals,4th Edition, Pearson Education.
- 7. A.V. Oppenheim, A.S. Willsky, with S. Nawaab "Signals & Systems"2nd Edition, Pearson Education, 2015.